

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PRE MID-TERM EXAMINATION

PHYSICS (042)

MARKING SCHEME

Class: XI Time: 1hr
Date: 06.08.25 Max Marks: 25

General Instructions:

(i) There are three sections A, B, and C with 13 questions in total, Section A has 5 Multiple Choice Questions of one mark each, Section B has 4 questions of two marks each and Section C has 4 questions of three marks each.

Section A

1.	(c) $L^{-2} T^2$	1		
2.	(c) 3	1		
3.	(b) 8m	1		
4.	(c) $x>0$, $y<0$, $a>0$	1		
5.	(a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.	1		
	Section-B			
6.	The area of the house on the slide is 1.75 cm ² .			
	The area of the house on the screen is 1.55 m^2 . Since 1 meter = 100 centimeters , $1.55 \text{ m}^2 = 100 \text{ centimeters}$			
	$1.55 * (100 \text{ cm} * 100 \text{ cm}) = 15500 \text{ cm}^2$.	1		

Area magnification is the ratio of the image area to the object area: $15500 \text{ cm}^2 / 1.75 \text{ cm}^2 = 8857.14$

Linear magnification is the square root of the area magnification: $\sqrt{8857.14} \approx 94.11$

7. 8 minutes and 20 seconds is equal to (8 * 60) + 20 = 500 seconds.

In the new unit system, the speed of light (c) is defined as 1.

Distance is calculated as speed * time. Therefore, the distance is 1 * 500 = 500 new units of length.

8.

Initial velocity of the car, u = 126 km/hr = 35 m/s

Final velocity of car, v = 0

Before coming to rest,

Distance covered by the car, s = 200 m

Let, retardation produced in the car = a

Now, using the third equation of motion,

$$v^2 - u^2 = 2as$$

⇒ $(0)^2 - (35)^2 = 2 \times a \times 200$

⇒ $a = -35 \times \frac{35}{2} \times 200 = -3.06 \,\text{m/s}^2$

Time taken by the car to stop is given by the first equation of motion.

That is,

$$v = u + at$$

$$\Rightarrow$$
 t = $\frac{(v-u)}{a}$ = $\frac{(-35)}{(-3.06)}$ = 11.44 sec

2

1

1

9. The slope of a velocity-time graph represents the acceleration of a particle at any given time. This is because acceleration is defined as the rate of change of velocity with respect to time, and the slope of a velocity-time graph is calculated as the change in velocity divided by the change in time, which is the mathematical definition of acceleration.

Section-C

10. (i) $[M^0L^0T^{-1}]$ (ii) $[M^{-1}L^3T^{-2}]$ (iii) $[ML^{-1}T^{-2}]$ (iv) $[ML^2T^{-1}]$ (v) $[ML^{-1}T^{-2}]$ (vi) $[ML^2T^{-2}]$.

11. $v = k * r^a * \rho^b * S^c$, where a, b, and c are the powers to be determined.

Equate Dimensions:

$$[T^{-1}] = [L] \begin{tabular}{l} $a * [ML^{-3}] \begin{tabular}{l} $b * [MT^{-2}] \cite{1mm} \c$$

Solve for Exponents:

 $v = k * \sqrt{(S / (\rho * r^3))}$

$$b + c = 0 \Rightarrow b = -c$$

 $-2c = -1 \Rightarrow c = \frac{1}{2}$
 $b = -\frac{1}{2}$
 $a - 3b = 0 \Rightarrow a = 3b \Rightarrow a = -\frac{3}{2}$
 $v = k * r^{-\frac{3}{2}} * \rho^{-\frac{1}{2}} * S^{\frac{1}{2}}$

Speed of car P,

$$v_{\rm P} = 36 \,\rm kmh^{-1}$$

= $36 \times \frac{5}{18} = 10 \,\rm ms^{-1}$ ½

Let $v_{\rm Q}$ and $v_{\rm R}$ be the speeds of cars Q and R

$$v_{Q} = v_{R} = 54 \text{ kmh}^{-1}$$

$$= 54 \times \frac{5}{18}$$

$$= 15 \text{ ms}^{-1} \text{ (given)}$$

 \therefore Relative speed of car Q w.r.t. car P, i.e., $v_{\rm QP}$ is given by

$$v_{\rm QP} = v_{\rm Q} - v_{\rm P} = 15 - 10$$

= 5 ms⁻¹

Also, Relative speed of car R w.r.t. car P, i.e., V_{RP} is given by

$$v_{RP} = v_R - (-v_P) = v_R + v_P$$

= 15 + 10 = 25 ms⁻¹
PQ = PR = 1 km (given)
= 1000 m

Let t = time taken by car PR to travel distance PR

Using relation

$$s = ut$$

(... car R is in uniform motion)

We get,
$$t = \frac{s}{u} = \frac{PR}{v_{RP}} = \frac{1000}{25} = 40 \text{ s.}$$

Suppose a = acceleration of car Q for t = 40 s; it will cover 1000 m in 40 s.

... Using the relation,

$$s = ut + \frac{1}{2}at^{2},$$
we get
$$PQ = u_{QF}t + \frac{1}{2}at^{2}$$
or
$$1000 = 5 \times 40 + \frac{1}{2}a \times (40)^{2}$$

$$= 200 + a \times \frac{1600}{2}$$
or
$$s00a = 800$$

$$a = 1 \text{ ms}^{-2}.$$

13. (a)

Speed"			Velocity	
(i)	Speed is defined as the rate of change of position of a body in any direction.		Velocity is defined as the rate of change of position of a body in a particular direction	
0.00	It is a scalar quantity. The speed of a body can be zero or positive.	701070	It is a vector quantity. The speed of a body can be positive, negative or zero.	

(b)

1

$$u = 0$$
, $a = 10 \text{ ms}^{-2}$, $S = 90 \text{ m}$, $t = ?$, $v = ?$
Using $v^2 - u^2 = 2as$, $v^2 - (0)^2 = 2 \times 10 \times 90$
 $\Rightarrow v = 30\sqrt{2} \text{ m/s}$
Again, using $S = ut + \frac{1}{2}at^2$, $90 = 0 \times t + \frac{1}{2} \times 10t^2$
 $\Rightarrow t = \sqrt{18} \text{ s} = 3\sqrt{2} \text{ s}$
Rebound velocity $= \frac{9}{10} \times 30\sqrt{2} \text{ ms}^{-1} = \sqrt{2} \text{ ms}^{-1}$

Time taken to reach highest point = $\frac{27\sqrt{2}}{10}$ s = $2.7\sqrt{2}$ s

Total time = $(3\sqrt{2} + 2.7\sqrt{2}) s = 5.7\sqrt{2} s$

OA represents the vertically downward motion after the ball has been dropped from a height of 90 m. The ball reaches the floor with a velocity of $30\sqrt{2}$ ms⁻¹ after having been

2